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A description of structures with close-packed anions is given in terms of simple, interpenetrating 
component lattice arrays. Each component array is denoted by a set of binary digits, from which 
the spatial relationship of these arrays can be derived. For ferrimagnetic rocksalt-like structures 
the magnetic dipole-dipole energy is minimized subject to exchange restraints, and it is shown that  
dipole patterns so obtained match those found by neutron-diffraction, and are not necessarily 
parallel and antiparallel to a single direction. Spinel and olivine structures are found to be ordered 
mixtures of some component arrays found in rocksalt structures and some found in sphalerite 
structures. 

1. I n t r o d u c t i o n  

Rocksalt ,  sphalerite,  spinel and olivine structures all 
contain close-packed anion arrays,  or anion structures 
which can be expressed as s imply  distorted forms of a 
close-packed lattice array. Goodenough & Loeb (1955) 
and Goodenough (1955) have invest igated the motivat-  
ing forces determining the positions of cations relative 
to this  close-packed anion structure,  and some causes 
of the distortions. These mot iva t ing  forces are derived 
from a number  of free-energy terms, namely  electrical, 
covalent, exchange, magnetic,  and entropic free 
energies (Goodenough & Loeb, 1955). To evaluate  the 
interactions between the various crystal  elements, 
the following analy t ica l  description of the spatial  
relationships was developed. Each structure is analysed 
in terms of a number  of component  arrays whose unit- 
cell dimensions are an integral number  t imes those of 
the structure under consideration, the integer being 
un i ty  or greater. As is the case in Fourier  analysis,  
certain regularities become apparent  only when more 
than  one period of the structure under  analysis  is 
examined.  

Loeb & Goodenough (1957) have used the algebra 
developed here to show tha t  magnetic  dipole inter- 
actions in antiferr imagnetics are anisotropic, i.e. the 
interaction energy depends on the orientations of the 
dipoles with respect to the crystal axes. 

2. Coord ina te  s y s t e m  

The locations of the ions and the orientations of the 
dipoles are expressed in a Cartesian system of coor- 
dinates with origin on an anion. The uni t  of distance 
is chosen as one-half the smallest  distance between 
anions, which, for the rocksalt structure, is the shortest 
ca t ion-anion distance. 

* The research in this document was supported jointly by 
the Army, Navy and Air Force under contract with the 
Massachusetts Institute of Technology. 

3. T h e  r o c k s a l t  s t r u c t u r e ;  
a n t i f e r r o m a g n e t i c s  

In  the rocksalt  structure,  the coordinates of the anions, 
as defined in § 2, sat isfy equation (1), and those of 
the cations sat isfy equat ion (2): 

x + y + z  = 2 K ,  (1) 

x + y + z  = 2 K + l  , (2) 

where K is an integer. 
For ferr imagnetic  crystals,  such as those of NiO, 

MnO and MnS, exchange (Goodenough & Loeb, 1955; 
Kramers ,  1930, 1952; Anderson, 1950) imposes the 
requi rement  tha t  a pair  of dipoles separated by and 
colinear with an anion must  be antiparallel .  Thus when 
a dipole located at (x, y, z) has Cartesian components 
(p, q, r), then  dipoles located at (x~2, y, z), at 
(x, y±2 ,  z) and at (x, y, z±2) all have Cartesian com- 
ponents ( - p ,  - q ,  - r ) ,  those at (x±4, y, z), at  
(x±2, y±2 ,  z), at  (x±2, y, z -2 ) ,  at  (x, y±2 ,  z±2), etc., 
have components (p, q, r). Thus, once the orientat ion 
of any  one dipole is fixed, the orientat ion of m a n y  
other dipoles is also fixed through the exchange 
mechanism.  I t  will now be investigated just  how m a y  
dipoles have their  direction f ixed by exchange once 
one dipole is fixed, or, expressed differently,  how m a n y  
independent  dipole systems there are in antiferro- 
magnetic  rocksalt structures. A t rans la t ional  motion 
described by a change of two units  in any  one of the 
coordinates involves no change in par i ty  of the coor- 
dinates (x,y,  z), but  a change in par i ty  of K (see 
equat ion (2)). Therefore exchange requirements  cause 
all dipoles at locations whose coordinates have the 
same pari ty,  to be either parallel or ant iparal lel  to each 
other. Those having  the same par i ty  for x, y and z, 
are all parallel  to each other if they  have the same 
par i ty  in K, and ant iparal lel  if they  have a K with 
different pari ty.  According to equation (2), the sum 
of x, y, and z, must  be odd, so tha t  the par i ty  of any  
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one of them is necessarily opposite to tha t  of the sum 
of the other two. Therefore, when the pari ty of two 
of the three coordinates of a dipole are given, the 
pari ty of the third one can be derived. Arbitrarily, 
we shall here consider the parities of y and z as in- 
dependent; the parities of y and z then describe an 
independent system of dipoles, with the pari ty of K 
distinguishing the oppositely directed dipoles within 
such a system. I t  will be convenient to use a binary 
notation to indicate the parities of x, y, z, and K: 
'0' is the symbol for 'even', '1', the symbol for 'odd'. 
The independent dipole systems are then denoted by 
the binary numbers 00,01, 11, 10, indicating the 
parities of y and z. I t  follows that  there are four 
independent dipole systems. These are listed in Fig. 1 ; 

C ~ C 

ferromagnetic rocksalt-like structure is given by eight 
parameters. In this section, the magnetic interaction 
energy between the four independent dipole systems 
will be computed as a function of the eight parameters, 
and relationships between these parameters will be 
found that  minimize this energy. 

The energy of a system of magnetic dipoles, all of 
magnitude, u, is 

A A - -5  A 
ED = ~2.,~ r~a/~i./~i_3/~2_,~ r i  ~ (/~i.rq)(fi~.rq) , (3) 

i < j  i < j  

where ri, is the vector from a dipole iai to a dipole gi, 
and #,, #j are unit  vectors in the directions of the 
dipoles lap la~. To calculate this interaction energy, 
it is convenient to first calculate the interactions ~4thin 
a cluster defined as a cation with its eighteen nearest 
and next-nearest cation neighbors. 1 , /  I / 

/ { h - /  , /  I ~, / If Cartesian coordinates of the dipoles are used so 
/ / /  I / ~ x  / J  tha t  

c ~  . . . . . . .  ~ ( ' ~ a ~  O 0 0 l  I I  I O  ,, " " " ~ ~ , 

I ,4'~ ~~//'/~-~~~9~-~ KI, ?. a' b' ¢ d' the energy E,, is expressed as a function of the twelve 
[ ~ ,-/ . ~ ~ ~ r ~ ~ ~  variables 
I a ~ . / Y - - . ~ - - - ~ - , . 4 :  . . . . .  - )  
' - ' c '  I . .~/..~//A/'/)~//fl / /  Pa, qa, ra ; Pb,  qb, rb; Pc, qc, re; Pa, qa, ra . 
I . . /  Y,."..rf',(7,,/J .~  

I / / /  ~ / / "  X + y + Z = 2 K + i The variables Pa,, q~,, etc. are eliminated through the 
. . . . . . . . . . .  ~ "  relations p~, = -pa ,  etc. Because of the relationship C' C 

Fig. 1. Geometric and Karnaugh maps for close-packed 
cation structure. 

in this diagram the four systems are subdivided 
according to the pari ty of K, as indicated above. In 
analogy with Switching theory, Fig. 1 is called a 
'Karnaugh map'  (Karnaugh, 1953). The three digits 
giving the parities of, respectively, y, z, and K are 
combined into a binary number called the 'descriptor'. 
The first two digits determine the column, the third 
the row in the Karnaugh map. From the Karnaugh 
map the result of any translation through the lattice 
can be derived. For example, the nearest neighbors 
of an anion at (0, 3, 1) are the cations at 

(0, 3, 2), (0, 4, 1), (1, 3, 1), (0, 3, 0), (0, 2, 1), 
and ( - 1 ,  3, 1) 

with the following respective descriptors, 

100, 010, 110, 101~ 011 and i I I ,  

The Karnaugh map then shows that  the six nearest 
neighbors belong respectively to the following compo- 
nent lattice arrays: 

d , b , c , d ' , b ' , c ' .  

4. Magne t i c  dipole interactions in an t i f e r ro -  
m a g n e t i c  rocksa l t  s t r u c t u r e s  

9~_ 2 - - 2  P~ qi +ri = 1, this means that  the interaction energy 
for the cluster is expressed in terms of eight in- 
dependent parameters. 

To calculate the general expression for the contribu- 
tion of a cluster to ED, first consider the case of an 
a site in the center of the cluster. If s is the shortest 
anion-cation distance, the first term in equation (3) 
becomes 

(l/2.s)-a/z2 ~ ; a ' ; j  ~--- (V2"8)--3/12;a 
J 

( n e a r  × + ( P c + g o , )  + • 
n e i g h b o r s )  

The next-nearest-neighbor terms do not appear since 
/~a'l~a' = - 1 ,  so tha t  they only contribute terms 
independent of dipole orientation. Further,  

A A 

so that  the entire sum vanishes. 
For the second term of equation (3) with i = a, 

Fig. 1 is conveniently used. For instance, the terms 
for j = b and j = b' become: 

-3/F(V'2.  s)-5 { (9~. r~)(/~b, ra,,)+ (9~. r~v,) (9~,. r~,,,)} 

= - 3 / z 2 ( V 2 . s ) - a { ( - p ~ + r a ) ( - p b + r ~ ) +  (p~--ra)(pb--rb) 

+ (pa+r~)(--pb--rb)+ (--p~--r~)(pb+rb)} 

= + 12/z2(V2.s)-3(p~rb+pbr~) . 

Since the orientation of a dipole is described by two The interactions with c, c', d, and d' sites are similar, 
parameters, the orientation of all dipoles in an anti- so that  the interaction energy of the a-site dipole in 
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the center of a cluster with the other dipoles in the 
cluster is 

W a  = 12( ] /2 . s )  -a 

×/z9(paro+pora+qarc+qcra+paqa+paqa) . (4) 

Interactions with the next-nearest neighbors contri- 
bute a constant term, which is independent of angle. 
I t  is therefore an isotropic term and can be neglected. 
I t  merely effects the definition of zero lattice energy. 

The total  dipole-interaction energy for the clusters 
is given by 

E~ = ½ ( W~ + Wb + Wc + Wa) ,  

where Wo, We, and Wa are the interaction energies of, 
respectively, a-, b-, c-, and d-cations with their sur- 
rounding near neighbors. The factor 1/2 accounts for 
the fact tha t  each cation is counted once as the 
center of its own cluster and again as a surrounding 
dipole in another cluster. 

Wo, We and Wa are derived from Wa by moving, 
successively b, c, and d into the position previously 
occupied by a. I t  is not correct to apply simple cyclic 
permutat ion to the subscripts of equation (4), for 
when b takes the place of a, the places previously 
held by b, c, and d, are not filled in order by c, d and a. 
The displacements must be accomplished such that  the 
relative positions of the component lattices remain 
unchanged, in other words, tha t  the pari ty  differences* 
indicated in the Karnaugh map of Fig. 1 are preserved. 
Table 1 shows the successive positions of the com- 

Table 1. The permutations used in deriving 
Wb, We, and Wa f rom Wa 

a b c d 

"~00 ~01 ~'" "~11  10 ~c" 

. ~ ' O l ~ O 0 ~ ~  1 0 ~ > < ~  1 1-,~ 

~" 11 10 j ~ i ' ' ' ' ~  00.. Ol "~'" 

~.. 1 0 ~ 1 1  0 1 ~ 0 0 . . ~  

"~00..:~ ~ 0 1 ~ 1 1  "~  ,K¢¢ 10 "~'~ 

ponent lattices when b, c, and d are removed suc- 
cessively into the position occupied by a. 

With the aid of these permutations it is found that :  

W0-- 12(1/2.s) -3 

× It ~ (p~q~ + pcqo + r~qa + paqb + pora + paro)  , 

Wc = 12(]/2.s) -3 
× ke 2 (p~ ra + pa r~ + qc r~ + qa r~ + p~ qo + po qc) , 

Wa = 12(]/2.s) -3 

× t~ 2 (pa qa + pa qa + ra qo + ro qa + Parc + pc ra) . 

* Par i ty  differences are computed according to the following 
rules: 

0minus  1 = 1 minus0  = 1 , 
0 minus 0 = 1 minus 1 = 0 .  

Therefore, since pi2 + qie + r/2 = 1, the magnetic dipole 
interaction energy for a cluster, ED, is given by 

E~j = Eo+3lz2/(]/2.s)-3{(pa+qa+ro)2 

+ (po+qc+ra)2+ (pc+qb+ra)2+ (pa+qa+rc) 2} , (5) 

where E 0 contains all terms independent of dipole 
orientations. Since none of the succeeding terms in the 
expression for E D is negative, E 0 represents the 
absolute minimum of E D. 

To calculate the interaction of a dipole with the 
dipoles outside its own cluster, it is convenient to  
introduce some further definitions. Since the dipoles 
within a cluster have been defined by the lower-case: 
letters rij, a, b , . . . ,  let the clusters be defined by 
upper case letters so tha t  a vector joining two clusters 
I,  J is defined as RH, and the vector joining dipole i 
in cluster I to dipole j in cluster J is: 

R i i i J  = R I j  + r i j  • 

Since the contributions to the first term in equation 
(2) vanish for the same reasons as in the case for 
intercluster interactions, the important  intercluster 
term is 

(~i. Rilj.+) (~y. Ri+/s) = (lai. R+j + gti. rii). ([a/. R+a + ~i" ri/) 

= (St i . R I j  ) ([.1]. R I j  ) + (St i . r/j)(St/, r#) 

+ ([1 i . R I j  ) ( g j .  rii) + (glj. R I j  ) (gl i . ri/) . (6) 

If demagnetizing effects are neglected, an infinite 
crystal may be assumed. Then each cluster is spheri- 
cally surrounded by identical clusters, so tha t  each 
RIj c a n  be paired with a ( - R / j ) .  When equation 
(6) is substituted into equation (3), the summation 
over all clusters causes a cancellation of the third 
and fourth terms of equation (6). The first term in 
equation (6) also vanishes because for every la/ in a 
cluster there is a la i, = - la  joined to Oi by the same 
RIj. This leaves the second term in equation (6), 
which is identical with ED given by equation (5) in 
every respect, except for s which is replaced by a 
larger distance. Since the magnetic dipole interaction 
varies as the inverse cube of the distance, the inter- 
action between remote clusters duplicates the intra- 
cluster interaction in strongly at tenuated form. The 
magnitude of the magnetic dipole interaction is thus 
found to be of the order (#2/s3)× 1022~ 106 erg.cm.-3. 
This is of the same order of magnitude as experimen- 
tally observed antiferromagnetic anisotropy energies, 
which can therefore be associated with the combined 
exchange and magnetic interaction energies between 
the dipoles in antiferromagnetic rocksalt structures. 

The maximum value of the magnetic dipole inter- 
action Emax. occurs when all dipole components in 
equation (5) equal 1/]/3. The dependence of the 
magnetic interaction energy between all dipoles on 
the dipole orientations can therefore be written in tho 
form given by equation (7). 

33* 
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~D - E 0  

Emax. - E0 

1 
- {(pa+q~+rb)~+ (pb+qc+ra) 2 

12 
+ (pc+qb + r~)~" + (p~+q~ + rc)9"} . (7) 

From equation (7) it follows that  the magnetic dipole 
energy is minimized when 

pa+qa+r~) = pb+qc+ra = pc+q~+r~ 

= p~+qa+rc = 0 ,  (8) 

subject to the restraints p~+q~+r~ = 1 with i = 
a, b, c, d. Since this gives eight equations with twelve 
variables, there are four free parameters, or one free 
parameter  for each simple cubic component lattice. 
Therefore, there is no unique solution which minimizes 
the dipole-dipole interactions. Refinement of the 
theory in the following sense may resolve the degener- 
acy. I t  has been assumed here tha t  all dipoles are 
rigidly fixed in space, and can vary only their orienta- 
tion. Actually, crystal distortion may occur to favor 
certain dipole orientations over others. Spin-orbit 
coupling also plays an important  role in resolving 
degeneracy. Some important  configurations for which 
E D = E 0 are discussed below. 

Let it be assumed that  all the dipoles are constrained 
to lie within a (100) plane. Then p~ = p~ = pc = p~ = 0 
and 

q~+rb = qb+ra = qc+ra = q~+rc = 0 .  (9) 

From Fig. 1, it follows that  b and d, both having odd 
par i ty  for (y+z),  have even x coordinates and lie in 
even (100) planes, whereas a and c have odd x and 
lie in odd (100) planes. Thus it is seen from equation 
(9) tha t  the assumption tha t  all dipoles lie in planes 
parallel to the Y Z  plane effectively 'uncouples' the 
even-x from the odd-x planes. Each set of planes can 
have independent low-energy configurations, which 
are expressed in terms of the parameters a and fl 
in Table 2. 

Table 2. Conditions for m i n i m u m  energy configurations 
of dipoles constrained to coordinate plane 

a ±m/(1--a 2) fl q -U(1- f l  2) 
and 

T~/(1- -a  2) - - a  T f ( 1 - f l  2) - - / ~  

(~0) 

In Fig. 2(a) are drawn the relative positions of 
a, b, c, and d dipoles, as seen looking in the direction 
of the X axis. In Figs. 2(b), 2(c), and 2(d) are sho~'n 
some typical spin configurations having different 
values of the parameters. Fig. 2(c) is consistent with 
:Kaplan's findings tha t  dipoles in a (111) plane give 
a minimum dipole-dipole interaction energy. However, 
Kaplan did not identify an optimum orientation within 
the (111) planes. I t  will now be shown that  configura- 
tions in which the spins are simultaneously parallel 
to a coordinate plane are the only configurations in a 

• o Od  

O b '  =c '  

Ob . c  

• o O d  

o o0..o " , , / "  

~---¢0 --o. 
,~..0. o~ 2 "  \ ,~ 
o. o0, .o \ .o"  ', 

(a) 

, / \  

,--/-% 

(b) 

, / z ' ,  

/ / ,  

, I /  

" / f  

(c) (d) 
Fig. 2. Pat terns giving minimum dipole-dipole interaction 
energies. Dots: odd (100) planes; circles: even (100) planes. 

(111) plane with minimum dipole-dipole anisotropy 
energy. 

To show this, first note tha t  if the dipoles lie in a 
(111) plane, then p,+q,+r~ = 0 for i = a , b , c , d .  
Kaplan's  requirement tha t  half of the near-neighbor 
dipoles be antiparallel to the other half is satisfied 
by the following: 

p q r 

a u v - - ( u - ~ - v )  u 2 - 6 v 2 - 6 ( u - ~ - v )  2 = 1 

b u v - - ( u + v )  u 2 + v 2 + ( u + v )  ~ = 1 

c - - u  - - v  ( u + v )  u 2 + v = + ( u - t - v )  2 = 1 

d - - u  - - v  ( u + v )  u ° ' + v ~ ' + ( u + v )  2 = 1 

(11) 

I t  follows that  E D = Eo+12v~(Emax.-Eo), which is a 
minimum only if v = 0 and the spins are simultane- 
ously parallel to a coordinate plane. If the signs for 
sublattices b and c in the above table are interchanged, 
the minimum value for E D o c c u r s  only if u = 0, 
which again is consistent with the statement tha t  the 
spins must be simultaneously parallel to a coordinate 
plane and therefore be parallel to a 110 axis. In Fig. 
2(c) thedipoles  are in a (111) plane directed in [011] 
and [011] directions. 

The author is indebted to Professor Frederic Keffer 
of the University of Pittsburgh for pointing out that 
Kaplan assumed that  the dipoles are all parallel to 
each other in a 111 plane, but that  the three antiparel- 
lel arraysdiscussed here imply parallel arrays respec- 
tively in 111,111 and l i t  planes, in which they are free 
to rotate. That  this is so, can be easily seen from the 
Karnaugh map in Fig. 1 ; for instance, reflection into 
the X Y-plane primes b and c-sites, which have odd 
Z-coordinates, but leaves a and d sites, having even 
Z-coordinates, unchanged. From equation 7 it follows 
that  any parallel orientation in a 111-plane gives mi- 
nimum dipole-dipole interaction energy. 
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Fig. 3. A low-energy configuration, as seen along the [ 111] axis. 

Fig. 3 represents a configuration corresponding to 
an energy given by 

E~ - E  0 1 

E m ~ . - E  o 12 " 

Although the dipole interaction calculated on the 
basis of an undistorted lattice is higher than that  for 
the configurations shown in Fig. 2, this configuration 
is important because closure of field lines would favor 
a contraction of the crystal along the [111] axis. This 
contraction has been experimentally observed (Shull, 
Strauser & Wollan, 1951), and may bring the dipole 
energy down to the level of the energy of the configura- 
tions shown in Fig. 2. 

5. Evaluat ion of neutron-di f fract ion  data 

Corliss & Hastings (private communication) have 
examined the spin orientations in such antiferro- 
magnetic rocksalt structures as MnO and MnS. They 
divided the cation lattice array into four antiferro- 
magnetic component structures, and expressed their 
results in terms of a parameter A, given by: 

A = (Plq2 + qlP2) + (plr4 + rip4) + (qlr3 + rlq3) 

-(P2ra+%P3) - (P3qa+q3P4)-(q2r4+r2q4) , (12) 

where the subscripts 1-4 dcnotc thc four component 
structures. The four component structures were found 
to be identical to four of the component arrays shown 
in Fig. 1, as listed in Table 3. 

Table 3. Identification of component structures described 
by Corliss & Hastings with those defined in Fig. 1. 

Corliss & Hastings 1 2 3 4 
This paper c' b a d 

Equation (12) is then rewritten in terms of the 
component lattices: 

° +qi+ri ) i= a,b,c,d Since (p~ 2 2 = 1 it becomes 

A = 2-½{(pa+qa+rb)2+ (pb+qc+ra)2+ (pc+qb+ra) ~ 

+ (pa+q~+rc)2}. (13) 

From equations (7) and (13) it follows that  

ED -E0  
A = 2-0 o  

It  follows that  A = 2 when E D = E  o. Therefore, 
any configuration having a minimum magnetic inter- 
action energy would give a neutron diffraction para- 
meter A = 2. This is just the value observed by Corliss 
& Hastings, so that  it is proven that  the dipole ar- 
rangement in MnO and MnS, whatever it be, is a 
minimum magnetic energy configuration. The neutron- 
diffraction data do not, therefore, provide values for 
the free parameters o~ and fl, so that it is not certain 
whether the orientation of the dipoles is actually fixed, 
or whether the dipoles rotate in a correlated manner, 
such that  the minimum energy is preserved, and A 
always equals 2. 

The configuration shown in Fig. 3 has A = 3/2, if 
it is assumed that  the structure is cubic. As was 
pointed out in the previous section, this structure is 
actually contracted along a [111] axis, so that  the 
experimental value A = 2 is not unreasonable for this 
configuration. 

6. The  sphaler i te  s tructure  

The ions of sphalerite, like those of rocksalt, form two 
interpenetrating close-packed structures, of which one 
consists of anions, the other of cations. Sphalerite and 
rocksalt differ in the relative positions of these close- 
packed arrays. The rocksalt cations are surrounded by 
six anions at the corners of an octahedron, and the 
anions are similarly surrounded by cations. In sphaler- 
ire each ion is surrounded by four oppositely charged 
ions at the corners of a tetrahedron. The sites occupied 
by cations in rocksalt are called B-sites, and their 
occupants B-ions, while the sites occupied by cations 
in sphalerite are called A-sites, which may be occupied 
by A-ions. The coordinates of A-sites have half-integer 
values and satisfy either equation (l la)  or (llb): 

x + y + z  = 2K+½,  ( l la)  

x + y ÷ z  = 2 K - ½ .  (llb) 

The coordinates of all cations in sphalerite satisfy 
either equation (lla) or equation (llb). For 
instance, a sphalerite crystal having a cation at 
site ( -  ½, - ½, - ½), which satisfies equation (1 la), .does 
not have a cation at (½, ½, ½), which satisfies equation 
(llb). A crystal whose cations have coordinates 
obeying equation (lla) can be converted into one 
obeying equation (llb) by rotation through 90 °. 

7. The  spinel  s tructure  

Spinels have the chemical formula M I M e 0 4 ,  where 
MI and MII stand for, generally, two types of metal 
ions. The oxygen ions form a, sometimes distorted, 
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close-packed array. One-third of the cations occupy 
A-sites, two-thirds occupy B-sites. The spinel struc- 
ture can thus be considered an ordered mixture  of the 
rocksalt and sphalerite structures. A spinel has one- 
four th  as m a n y  occupied A-sites as does sphalerite, 
and  one-half as m a n y  occupied B-sites as does rocksalt. 
l~emoval of half  of the component cation arrays of the 
rocksalt structure can be accomplished in two essen- 
t ia l ly  different ways, as shown in Table 4. Ei ther  an 

Table 4. Generation of MIMnO 4 structures 
from rocksalt 

(a) Odd n u m b e r  of (b) E v e n  number  of 
primed lattices primed lattices 

] b c d i 

a" i 

I 

b L d 

a "  C" .... ! 

even or an odd number  of pr imed arrays m a y  be 
removed;  every combinat ion of four arrays reduces by  
rotation to one of the two combinations shown in 
Table 4. 

The two resulting structures are essentially different, 
for the sites of lattices a' ,  b, c and d form a te t rahedral  
structure (see Fig. 1), whereas a',  b, c', d form planar  
arrays. The former structure is therefore more sym- 
metrical,  and it is the one out of which spinels are built  
up. The lat ter  structure will be discussed in § 8. 

When either one or three pr imed and unpr imed 
arrays,  adding up to half  the rocksalt cations, have 
been removed, they  must  be replaced by A-cations. 
These A-cations occupy the center of the te t rahedra  
from which the B-sites were removed. If the scheme 
followed in Table 4(a) is followed, then the surround- 
ings of the anion at the origin would be as indicated 
in Table 5 (see also Fig. 1). 

Table 6. Surroundings of an anion at (0, - 2 ,  0) in spinel 

Component  
Si te  D e s c r i p t o r  l a t t i c e  S t a t u s  

1, -- 2, 0 001 a' F i l l e d  
- -  l ,  - -  2, 0 000  a E m p t y  

0, - -  1, 0 I01  d' E m p t y  
0, - -  3, 0 100 d F i l l e d  
0, - - 2 ,  1 011 b" E m p t y  

0, - -  2, - -  1 010 b F i l l ed  

whose coordinates obey the equation x + y + z = 2 K + ½ .  
The surroundings of the anion at ( 0 , - 2 ,  0) form a 
configuration tha t  is just  the mirror image of those 
of the anion at (0, 0, 0). Fig. 4 shows this portion of 
the spinel structure. 

[540, , : ~OCK$~-T A404: ZI~CBuENDE A,~O4 : ZI~C~SuE~OE 

C~EMOVE HA( .~  T H E  B - 5  T,C~KE (DINE EIGHT~I T A K E  ONE F,GHT~.I 

0 o  ~J, -- ,o ] 

SU BS~',~rUwE ~0~ 
" - - I ~ E ~ , O V E ~  B S ' r 'Es  _ , 

S P I N E L  ~ / , ~  C 

(o,o,o) d ) 

0-~.-i.-~) 
2K-~ 

Fig. 4. Generation of spinel. 

Table 5. Surroundings of anion at (0, 0, 0) in spinel 

Status, 

Component according to 

Site Descriptor  lat t ice Table 4(a) 

1, 0, 0 000 a E m p t y  
--1, 0, 0 001 a' Filled 

0, 1, 0 100 d Filled 
0, -- 1, 0 101 d' Empty 

0, 0, 1 010 b Filled 
0, 0, -- 1 011 b' Empty 

The location of the nearest A-ion is at the center 
of the ' empty '  tetrahedron,  hence on a line making  
equal, obtuse angles with lines toward a', b and d. 
I t  is therefore at the location ( ½ , - ½ , - ½ ) ,  hence 
belongs to the sites whose coordinates obey the 
equat ion x + y + z  = 2K-½.  

The surroundings of the anion at, for instance, 
(0, - 2 ,  0) are given in Table 6. 

The nearest  A-ion is at  ( - ½ , - ~ ,  ½) the center of 
the ' empty '  tetrahedron,  and hence in the lattice 

The spinel structure is therefore summarized as 
consisting of a close-packed anion lattice array, one 
or three of the unpr imed and three or one of the pr imed 
component cation arrays of the rocksalt  structure, and 
one-eighth of each of the two conjugate cation arrays 
tha t  can make up the sphalerite structure. There are, 
therefore, six interpenetrat ing close-packed cation 
arrays in the spinel structure, each with a latt ice 

parameter twice that of the close-packed anion arrays. 
Each anion is surrounded by three B-cations in 
mutua l ly  perpendicular  directions and an A-cation in 
a direction making equal obtuse angles with these three 
directions. This configuration occurs throughout  the 
spinel structure, in eight possible orientations, the 
A-ion being in one of the eight octants surrounding an 
anion. 

Final ly,  in Table 7, another example is worked out, 
namely  the surroundings of an anion at (8, 3, 1). The 
nearest  A-ion is at  (½~-, 5 . ~, 1), its coordinates obey the 

j_ l  equation x + y + z  = 2 K ,  3. 
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Table 7. Surroundings of an anion at (8, 3, 1) in spinel 

Status, 
Component according to 

Site Desc r ip to r  la t t ice  Tab le  4 (a) 

9, 3, 1 110 c F i l led  
7, 3, 1 111 c' E m p t y  
8, 4, 1 010 b Fi l led  
8, 2, 1 011 b' E m p t y  
8, 3, 2 100 d Fi l led  
8, 3, 0 101 d" E m p t y  

Table 10. Surroundings of anion at (8, 3, 1) in olivine 

Status, 
Component according to 

Site Descriptor lattice Table 4(b) 

9, 3, 1 110 c E m p t y  
7, 3, 1 111 c' F i l led  
8, 4, 1 010 b Fi l led  
8, 2, 1 011 b' E m p t y  
8, 3, 2 100 d Fi l led  
8, 3, 0 101 d '  E m p t y  

8. The  olivine s t r u c t u r e  

Like spinels, olivines have the chemical formula 
MIM~I04, and the oxygens form a distorted close- 
packed array. One third of the cations occupy A-sites, 
and two-thirds occupy B-sites, just as in the spinel 
structure. The distortion is such tha t  the oxygens sur- 
rounding an A-ion are pulled very close to the A-ion, 
so tha t  the olivine structure looks like an array of 
tetrahedra, with B-ions in the interstices. The A-ions 
are, in olivine, Si, and the bond between Si and 0 is 
covalent, hence very short. The difference between 
spinels and olivines is illustrated by Table 4, for the 
olivine structure is generated from rocksalt and 
sphMerite according to the scheme of Table 4(b), 
rather than tha t  of Table 4(a) used for spinel. As 
explained in § 7, the resulting structure has a sym- 
metry  lower than tha t  of spinel, with a preferred axis 
(one of the [111] axes of the close-packed anion lat- 
tice). This is in accord with experimental observations 
on olivine. As a result of the removal of B-cations 
according to the scheme shown in Table 4(b), the 
A-sites replacing these B-cations are located in planes 
parallel to those of the remaining B-sites. As examples, 
the surroundings of anions respectively at (0, 0, 0), 
(0, - 2 ,  0) and (8, 3, 1) are shown in Tables 8, 9, and 
10. 

Table 8. Surroundings of anion at (0, 0, 0) in olivine 

Sta tus ,  
C o m p o n e n t  accord ing  to 

Site Desc r ip to r  l a t t i ce  Tab le  4(b) 

1, 0, 0 000 a E m p t y  
-- 1, 0, 0 001 a '  F i l led  

0, 1, 0 100 d Fi l led  
0, -- 1, 0 101 d '  E m p t y  

0, 0, 1 010 b Fi l led  
0, 0, -- 1 011 b" E m p t y  

Table 9. Surroundings of anion at (0, - 2 ,  0) in olivine 

Status, 
Component according to 

Site Descriptor lattice Table 4(b) 

1, -- 2, 0 001 a '  F i l led  
-- l ,  - -2 ,  0 000 a E m p t y  

0, -- 1, 0 I01 d '  E m p t y  
0, -- 3, 0 100 d Fi l led  
0, - -2 ,  1 011 b' E m p t y  

0, -- 2, --  1 010 b Fi l led  

The A-ion nearest to (0, 0, 0) is located at (½, - ½, - ½) ; 
its coordinates satisfy the equation x + y + z  -- 2K-½.  

The A-ion nearest to ( 0 , - 2 , 0 )  is located at 
(_½, _2a, ½); its coordinates satisfy the equation 
2K+½. 

The A-ion nearest (8, 3, 1) is at (~z, r, . ~, ~), its co- 
ordinates satisfy the equation x + y + z  = 2K-½.  I t  is 
observed that  the immediate surroundings of anions 
at (0, 0, 0) and at ( 0 , - 2 ,  0) are the same in spinel 
as they are in olivine, but tha t  for the anion at 
(8, 3, l) the configurations of the surrounding ions 
differ in orientation. 

9. Conclus ions  

Through various applications it has been shown that  
a description of crystals in terms of interpenetrating 
arrays is convenient when interactions between 
various crystal elements are to be evaluated, partic- 
ularly when the spatial relationships between these 
lattices enter into these interactions. 

The binary algebra describing these lattices has been 
useful in showing tha t  dipole arrangements observed 
in antiferromagnets correspond to a minimum mag- 
netic dipole interaction energy. Furthermore,  it has 
given a better insight into the spinel and olivine 
structures. 

This algebra has several advantages over pictorial 
unit-cell descriptions. Most of the interactions con- 
sidered extend beyond the boundaries of a unit  cell, 
and therefore cannot be contained in a unit-cell 
representation. Moreover, a single unit cell is usually 
chosen relative to one of the component lattices. For 
example, the drawing in Fig. 1 shows twice as many 
c-lattice elements as it does a-, b- and d-elements. 
By contrast, the Karnaugh map shown in the same 
figure represents the eight lattices in a perfectly 
symmetrical manner. As a consequence, the difficulty 
of counting fractional ions at corners, edges and faces 
is avoided, and a more direct connection between the 
chemical formula and crystal structure is established. 
The symmetry  and flexibility of the Karnaugh repre- 
sentation allows a grouping together of various con- 
figurations, such as tetrahedra,  squares and others 
tha t  may be of interest, which is very difficult to do 
in the ease of the unit-cell representation, since most 
of these configurations overlap several adjacent unit  
cells. The recent observations tha t  some metallic 
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crys ta ls  and  meta l -ox ide  crys ta ls  con ta in  the  same 
ca t ion  s t ruc tu res  i nd ica t ed  t h a t  a separa te  descr ip t ion  
of the  var ious  ca t ion  la t t ices  w i thou t  reference to the  
an ion  s t ruc tu re  is qui te  useful .  
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The structure of 9:10-dihydro-1:2 : 5: 6-dibenzanthracene has been determined by two-dimensional 
Fourier  syntheses. The cell is monoclinic with a = 9.49, b = 6"77, c = 11.38 /~, fl = 91 ° 29'; 
2 molecules (C22H16) per trait cell; space group = P21/a. Atomic coordinates were obtained from 
Fo and (Fo--Fc) Fourier  syntheses on the three principal zones. The molecule is essentially planar 
(r.m.s. deviat ion of carbon atoms from mean plane is 0.039/~); the mean length of the C-C single 
bond in the central ring is 1.503 .~, the mean bond length of the aromatic  rings is 1.401 .~ and the 
mean angle in the aromatic  rings is 120 ° 0'. 

I n t r o d u c t i o n  

This compound (Fig. 1) is of interest because it is 
s l ight ly  carcinogenic  and  is der ived f rom the  more  
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Fig. 1. 9 : 10-Dihydro-1 : 2 : 5 : 6-dibenzanthracene (C22Ht6). 

s t rong ly  carcinogenic pa r en t  compound ,  1 : 2 : 5" 6- 
d ibenzan th racene .  I t  is of in teres t  also because of i ts  
r e la t ion  to  9 :10 -d ihyd roan th racene .  The l a t t e r  com- 
p o u n d  was shown by  Ferr ier  & Iba l l  (1954) to have  
a ben t  molecule  in which two p l ana r  halves  are in- 
cl ined to each o ther  a t  145 °. Becke t t  & Mulley (1955) 
subsequen t ly  gave some theore t ica l  reasons,  based on 
chemical  evidence,  why  9 :10 -d i subs t i t u t ed  an th ra -  

cenes should  have  ben t  molecules,  and  t hey  pos tu l a t ed  
s t ruc tures  for the  cia- and  traws- isomers which can  
occur when the  subs t i tuen t s  are different .  The  presen t  
work will show t h a t  9 : 1 0 - d i h y d r o - l : 2 : 5 : 6 - d i b e n z -  
an th racene  has a planar molecule  which  is no t  in 
accord wi th  predic t ions  f rom norma l  s tereochemical  
considerat ions .  

A p re l imina ry  crys ta l lographic  s t udy  was carr ied out  
by  Iba l l  (1938), who gave the  un i t  cells and  space 
groups of two crys ta l  forms,  bo th  monocl inic .  He  
showed t h a t  one form [Form (ii)] had  a space group  
in which the  molecules mus t  possess a centre  of sym- 
me t ry ,  and  f rom this  deduced t h a t  the  molecule mus t  
be p lanar .  I t  is th is  form which is the  subjec t  of t he  
present  inves t iga t ion .  The  crysta ls  (from a sample  
kindly provided by Dr J. W. Cook) were the same as 
were used in the  earl ier  inves t iga t ion .  

Crys ta l  data  

The crys ta ls  are monocl in ic  six-sided pla tes  paral le l  to  
(001). I n  the  earl ier  work (Iball ,  1938) the  un i t  cell 
chosen was as follows: 

a = 9.51, b = 6.77, c = 24-43/~, fl = 111.4 ° . 

The crystals  have  nega t ive  birefr ingence ~dth fl 
paral le l  to  b and  y a p p r o x i m a t e l y  paral le l  to  c. The  
space group wi th  the  above  cell is B21/c, and  th is  


