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A Binary Algebra Describing Crystal Structures with Closely-Packed Anions*

By A.L. LoEB

Massachusetts Institute of Technology, Department of Electrical Engineering and Lincoln Laboratory, Lexington 73,
Mass., U.S8.A.

(Recetved 28 October 1957)

A description of structures with close-packed anions is given in terms of simple, interpenetrating
component lattice arrays. Each component array is denoted by a set of binary digits, from which
the spatial relationship of these arrays can be derived. For ferrimagnetic rocksalt-like structures
the magnetic dipole—dipole energy is minimized subject to exchange restraints, and it is shown that
dipole patterns so obtained match those found by neutron-diffraction, and are not necessarily
parallel and antiparallel to a single direction. Spinel and olivine structures are found to be ordered
mixtures of some component arrays found in rocksalt structures and some found in sphalerite

structures.

1. Introduction

Rocksalt, sphalerite, spinel and olivine structures all
contain close-packed anion arrays, or anion structures
which can be expressed as simply distorted forms of a
close-packed lattice array. Goodenough & Loeb (1955)
and Goodenough (1955) have investigated the motivat-
ing forces determining the positions of cations relative
to this close-packed anion structure, and some causes
of the distortions. These motivating forces are derived
from a number of free-energy terms, namely electrical,
covalent, exchange, magnetic, and entropic free
energies (Goodenough & Loeb, 1955). To evaluate the
interactions between the various crystal elements,
the following analytical description of the spatial
relationships was developed. Each structure is analysed
in terms of a number of component arrays whose unit-
cell dimensions are an integral number times those of
the structure under consideration, the integer being
unity or greater. As is the case in Fourier analysis,
certain regularities become apparent only when more
than one period of the structure under analysis is
examined.

Loeb & Goodenough (1957) have used the algebra
developed here to show that magnetic dipole inter-
actions in antiferrimagnetics are anisotropic, i.e. the
interaction energy depends on the orientations of the
dipoles with respect to the crystal axes.

2. Coordinate system

The locations of the ions and the orientations of the
dipoles are expressed in a Cartesian system of coor-
dinates with origin on an anion. The unit of distance
is chosen as one-half the smallest distance between
anions, which, for the rocksalt structure, is the shortest
cation—anion distance.

* The research in this document was supported jointly by
the Army, Navy and Air Force under contract with the
Massachusetts Institute of Technology.
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3. The rocksalt structure;
antiferromagnetics

In the rocksalt structure, the coordinates of the anions,
as defined in § 2, satisfy equation (1), and those of
the cations satisfy equation (2):

r+y+z =2K, (L)
x+y+z =2K+1, (2)

where K is an integer.

For ferrimagnetic crystals, such as those of NiO,
MnO and MnS, exchange (Goodenough & Loeb, 1955;
Kramers, 1930, 1952; Anderson, 1950) imposes the
requirement that a pair of dipoles separated by and
colinear with an anion must be antiparallel. Thus when
a dipole located at (z, y, z) has Cartesian components
(p,q,7), then dipoles located at (x+2,y,2), at
(x, y£2, z) and at (z, y, 2+2) all have Cartesian com-
ponents (—p, —q, —7), those at (z+4,y,z2), at
(x£2, y+2, 2), at (x+2, y, 2+£2), at (z, y+£2, 24:2), ete.,
have components (p, ¢, 7). Thus, once the orientation
of any one dipole is fixed, the orientation of many
other dipoles is also fixed through the exchange
mechanism. It will now be investigated just how may
dipoles have their direction fixed by exchange once
one dipole is fixed, or, expressed differently, how many
independent dipole systems there are in antiferro-
magnetic rocksalt structures. A translational motion
described by a change of two units in any one of the
coordinates involves no change in parity of the coor-
dinates (z, y,z), but a change in parity of K (see
equation (2)). Therefore exchange requirements cause
all dipoles at locations whose coordinates have the
same parity, to be either parallel or antiparallel to each
other. Those having the same parity for z, ¥ and z,
are all parallel to each other if they have the same
parity in K, and antiparallel if they have a K with
different parity. According to equation (2), the sum
of z, y, and z, must be odd, so that the parity of any
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one of them is necessarily opposite to that of the sum
of the other two. Therefore, when the parity of two
of the three coordinates of a dipole are given, the
parity of the third one can be derived. Arbitrarily,
we shall here consider the parities of ¥ and z as in-
dependent; the parities of y and z then describe an
independent system of dipoles, with the parity of K
distinguishing the oppositely directed dipoles within
such a system. It will be convenient to use a binary
notation to indicate the parities of z,y,z2, and K:
‘0’ is the symbol for ‘even’, ‘1’, the symbol for ‘odd’.
The independent dipole systems are then denoted by
the binary numbers 00,01, 11, 10, indicating the
parities of y and z. It follows that there are four
independent dipole systems. These are listed in Fig. 1;

yz—»
000!l 11 10
Olalb|c|d
Kll alblc|d

X+y+zZ=2K+1

Fig. 1. Geometric and Karnaugh maps for close-packed
cation structure.

in this diagram the four systems are subdivided
according to the parity of K, as indicated above. In
analogy with Switching theory, Fig. 1 is called a
‘Karnaugh map’ (Karnaugh, 1953). The three digits
giving the parities of, respectively, y,z, and K are
combined into a binary number called the ‘descriptor’.
The first two digits determine the column, the third
the row in the Karnaugh map. From the Karnaugh
map the result of any translation through the lattice
can be derived. For example, the nearest neighbors
of an anion at (0, 3, 1) are the cations at

0,3,2), (0,4,1), (1,3,1), (0,38,0), (0,2, 1),
and (—1,3,1)

with the following respective descriptors,

100, 010, 110, 101, 011 and 111,

The Karnaugh map then shows that the six nearest
neighbors belong respectively to the following compo-
nent lattice arrays:

d,b,c,d,b',c .

4. Magnetic dipole interactions in antiferro-
magnetic rocksalt structures

Since the orientation of a dipole is described by two
parameters, the orientation of all dipoles in an anti-
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ferromagnetic rocksalt-like structure is given by eight
parameters. In this section, the magnetic interaction
energy between the four independent dipole systems
will be computed as a function of the eight parameters,
and relationships between these parameters will be
found that minimize this energy.

The energy of a system of magnetic dipoles, all of
magnitude, u, is

E,=p 272; Mz H 3# (ﬁi-ri;‘)(ﬁrrij) » (3)

vshere ry | is the vector from a dipole p; to a dipole W
and ;, fi, are unit vectors in the directions of the
dipoles y;, W;. To calculate this interaction energy,
it is convenient to first calculate the interactions within
a cluster defined as a cation with its eighteen nearest
and next-nearest cation neighbors.

If Cartesian coordinates of the dipoles are used so
that

B = ipitigitkrs pirgi+ri =1,

the energy K, is expressed as a function of the twelve
variables
pa, qd: Tas pb> qv, Tv;

Pes Ges Te; DPa, 9a, Ta -

The variables p,., g, etc. are eliminated through the
relatlons pa = —p,, etc. Because of the relationship
pi+q5+7F = 1, this means that the interaction energy
for the cluster is expressed in terms of eight in-
dependent parameters.

To calculate the general expression for the contribu-
tion of a cluster to E,, first consider the case of an
a site in the center of the cluster. If s is the shortest
anion—-cation distance, the first term in equation (3)
becomes

(V2.8) 32 X gy = (V2.8)3 221,
X [(/"zb_*’/’)'b’) + (ﬁc"‘/}c')

(near
neighbors)

+ (fa+ )] -

The next-nearest-neighbor terms do not appear since
Ui = —1, so that they only contribute terms
independent of dipole orientation. Further,

,a'b = _ﬁb’; ﬁc = _/;c'; /"Zd = _la’d'

so that the entire sum vanishes.
For the second term of equation (3) with i = g,

Fig. 1 is conveniently used. For instance, the terms
for j = b and j = b’ become:

—3u(y2 -3)_5{(ﬁa- rab)(,&b Toy)+ (/:za Toy) (/21;' Tay)}

= =32 2.8) 3 {(—=Pat 1) (— s+ 75) + (Do —72) (P —T7)
+(Da+7a) (=D —70) + (= Pa—70) (Py+75)}

= +12u2()/2.8) 73 (parp+Do7y) -

The interactions with ¢, ¢, d, and d’ sites are similar,
so that the interaction energy of the a-site dipole in
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the center of a cluster with the other dipoles in the
cluster is

Wa = 12()2.5)8
X U2 (Paro+Pora+qare+qcra+ Paa+Pada) . (4)

Interactions with the next-nearest neighbors contri-
bute a constant term, which is independent of angle.
It is therefore an isotropic term and can be neglected.
It merely effects the definition of zero lattice energy.

The total dipole-interaction energy for the clusters
is given by

ED = %(Wu+Wb+Wc+Wd) s

where Wy, W, and Wq are the interaction energies of,
respectively, a-, b-, ¢-, and d-cations with their sur-
rounding near neighbors. The factor 1/2 accounts for
the fact that each cation is counted once as the
center of its own cluster and again as a surrounding
dipole in another cluster.

Wy, We and Wq are derived from W, by moving,
successively b, ¢, and d into the position previously
occupied by a. It is not correct to apply simple cyclic
permutation to the subscripts of equation (4), for
when b takes the place of a, the places previously
held by b, ¢, and d, are not filled in order by ¢, d and a.
The displacements must be accomplished such that the
relative positions of the component lattices remain
unchanged, in other words, that the parity differences*
indicated in the Karnaugh map of Fig. 1 are preserved.
Table 1 shows the successive positions of the com-

Table 1. The permutations used in deriving
Wy, We, and Wa from W,

a b c d
104

><00 <<
*11 ><00 01<
>< 0,><00$

S, <

‘00 01 11 10«

e 5

ponent lattices when b, ¢, and d are removed suc-
cessively into the position occupied by a.
With the aid of these permutations it is found that:

Wy = 12(}'2.5)8
X 12 (Poge+ PeQy +7vqa +Pags+ PoTa+Pals) »

We=12(y2.5)-3
X P (Pera+ Pare+qeta+qate+PeQo+Poge)
Wd = (1/2 s)3

)"
U2 (PaQa~+Paga+7aqe+709a+ Pare+ Lera)

* Parity differences are computed according to the following
rules:

0 minus 1 = 1 minus 0

1

=1,
0 minus 0 = 1 minus 1 = 0.
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Therefore, since p?+g¢?+r? = 1, the magnetic dipole
interaction energy for a cluster, E,, is given by

E) = Ey+3u2[(V2.8)3{(Pa+qa+7s)?
+ (Po+qe+7a)? + (Pe+qo+7a)2+ (Pat+qa+7e)?} , (5)

where E, contains all terms independent of dipole
orientations. Since none of the succeeding terms in the
expression for K, is negative, K, represents the
absolute minimum of E,,.

To calculate the interaction of a dipole with the
dipoles outside its own cluster, it is convenient to
introduce some further definitions. Since the dipoles
within a cluster have been defined by the lower-case
letters 7, a,b, ..., let the clusters be defined by
upper case letters so that a vector joining two clusters
I, J is defined as R;;, and the vector joining dipole ¢
in cluster I to dipole j in cluster J is:

Rijs = Ryy+ry;.

Since the contributions to the first term in equation
(2) vanish for the same reasons as in the case for
intercluster interactions, the important intercluster
term is

(M- Ryp) (M- Rygpy) = (M- Rpy+w.ry). (W Ry +uy.1y)
= (- Ry (- Rpy)+ (1. 15) (W 1)
+ (B Ryy) (). 135) + (M- Ryy) (. ry) (6)

If demagnetizing effects are neglected, an infinite
crystal may be assumed. Then each cluster is spheri-
cally surrounded by identical clusters, so that each
R;, can be paired with a (—R;;). When equation
(6) is substituted into equation (3), the summation
over all clusters causes a cancellation of the third
and fourth terms of equation (6). The first term in
equation (6) also vanishes because for every p, in a
cluster there is a u; = —p joined to p; by the same
R;;. This leaves the second term in equation (6),
which is identical with E, given by equation (5) in
every respect, except for s which is replaced by a
larger distance. Since the magnetic dipole interaction
varies as the inverse cube of the distance, the inter-
action between remote clusters duplicates the intra-
cluster interaction in strongly attenuated form. The
magnitude of the magnetic dipole interaction is thus
found to be of the order (u2/s?)x 1022 ~ 10¢ erg.cm."3,
This is of the same order of magnitude as experimen-
tally observed antiferromagnetic anisotropy energies,
which can therefore be associated with the combined
exchange and magnetic interaction energies between
the dipoles in antiferromagnetic rocksalt structures.

The maximum value of the magnetic dipole inter-
action K., occurs when all dipole components in
equation (5) equal 1/)/3. The dependence of the
magnetic interaction energy between all dipoles on
the dipole orientations can therefore be written in the
form given by equation (7).
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E, —-E, 1 . .
BB, 13 (Pt @)t (Potgetra) P NS AN

+ (Pe+qo+7a)2+ (Patgatre)?} . (7) Ob' ec' b ec OB NSNS
From equation (7) it follows that the magnetic dipole o Ca e % s =
energy is minimized when Ob ec Qb ec' Ob AN

®a Od ¢a' Od' ea \‘p/'\\/d'\
Pat+qat+7 = Po+qgct+?a = Pc+qo+7a
= pd+Qa+Tc = 0 3 (8) (a) (b)

subject to the restraints pf+g¢;+rf =1 with ¢ =
a, b, ¢, d. Since this gives eight equations with twelve a4 +— —O» 4> <O <
variables, there are four free parameters, or one free ¢ ? { ! s

parameter for each simple cubic component lattice.
Therefore, there is no unique solution which minimizes
the dipole-dipole interactions. Refinement of the
theory in the following sense may resolve the degener-
acy. It has been assumed here that all dipoles are
rigidly fixed in space, and can vary only their orienta-
tion. Actually, crystal distortion may occur to favor
certain dipole orientations over others. Spin-orbit
coupling also plays an important role in resolving
degeneracy. Some important configurations for which
E, = E, are discussed below.

Let it be assumed that all the dipoles are constrained
to lie within a (100) plane. Then pg = p» = pc = pa =0
and

gat+7ro = @+7a = @c+7a = Ga+7c = 0. )]

From Fig. 1, it follows that b and d, both having odd
parity for (y+z), have even x coordinates and lie in
even (100) planes, whereas a¢ and ¢ have odd x and
lie in odd (100) planes. Thus it is seen from equation
(9) that the assumption that all dipoles lie in planes
parallel to the YZ plane effectively ‘uncouples’ the
even-z from the odd-z planes. Each set of planes can
have independent low-energy configurations, which
are expressed in terms of the parameters « and f
in Table 2.

Table 2. Conditions for minimum energy configurations
of dipoles constrained to coordinate plane

| g T _|a r
b« +V(1—a?) a|p +V(1-4?)
and
d| Fyl—oa? —« ¢ | FVA-p) -8

(10)

In Fig. 2(a) are drawn the relative positions of
a, b, ¢, and d dipoles, as seen looking in the direction
of the X axis. In Figs. 2(b), 2(c), and 2(d) are shown
some typical spin configurations having different
values of the parameters. Fig. 2(c) is consistent with
Kaplan’s findings that dipoles in a (111) plane give
a minimum dipole-dipole interaction energy. However,
Kaplan did not identify an optimum orientation within
the (111) planes. It will now be shown that configura-
tions in which the spins are simultaneously parallel
to a coordinate plane are the only configurations in a

i
PO
5L K
SIS

2R

qo— =Ob —4-> €O— ¢+

(c) (@

Fig. 2. Patterns giving minimum dipole-dipole interaction
energies. Dots: odd (100) planes; circles: even (100) planes.

(111) plane with minimum dipole-dipole anisotropy
energy.

To show this, first note that if the dipoles lie in a
(111) plane, then p;+g;+r =0 for ¢ =a,b,c,d.
Kaplan’s requirement that half of the near-neighbor
dipoles be antiparallel to the other half is satisfied
by the following:

Y4 q r
a u v —(utv) w4+ (utv)=1
b u v —(ut+v) U402+ (utw)2=1 (11)
¢ —u —v (u+v) w2404 (utv)2=1
d —u —v (u+v) w424 (utv)2 =1

It follows that Ej, = E +12v%(E 4, —E,), which is a
minimum only if » = 0 and the spins are simultane-
ously parallel to a coordinate plane. If the signs for
sublattices b and ¢ in the above table are interchanged,
the minimum value for E; occurs only if » =0,
which again is consistent with the statement that the
spins must be simultaneously parallel to a coordinate
plane and therefore be parallel to a 110 axis. In Fig.
2(c) the dipoles are in a (111) plane directed in [011]
and [011] directions.

The author is indebted to Professor Frederic Keffer
of the University of Pittsburgh for pointing out that
Kaplan assumed that the dipoles are all parallel to
each other in a 111 plane, but that the three antiparel-
lel arrays discussed here imply parallel arrays respec-
tively in 111, 111 and 111 planes, in which they are free
to rotate. That this is so, can be easily seen from the
Karnaugh map in Fig. 1; for instance, reflection into
the X Y-plane primes b and c-sites, which have odd
Z-coordinates, but leaves ¢ and d sites, having even
Z-coordinates, unchanged. From equation 7 it follows
that any parallel orientation in a 111-plane gives mi-
nimum dipole-dipole interaction energy.
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Fig. 3. A low-energy configuration, as seen along the [111] axis.

Fig. 3 represents a configuration corresponding to
an energy given by

E, —-E, 1
Emax._Eo B 12°

Although the dipole interaction calculated on the
basis of an undistorted lattice is higher than that for
the configurations shown in Fig. 2, this configuration
is important because closure of field lines would favor
a contraction of the crystal along the [111] axis. This
contraction has been experimentally observed (Shull,
Strauser & Wollan, 1951), and may bring the dipole
energy down to the level of the energy of the configura-
tions shown in Fig. 2.

5. Evaluation of neutron-diffraction data

Corliss & Hastings (private communication) have
examined the spin orientations in such antiferro-
magnetic rocksalt structures as MnO and MnS. They
divided the cation lattice array into four antiferro-
magnetic component structures, and expressed their
results in terms of a parameter 4, given by:

A = (PG +01D) + (P74 +71D4) + (@175 +7195)

— (Pary+73P3) — (Dada+qaPa) — (Qo7a+7294) »  (12)

where the subscripts 1-4 denote the four component
structures. The four component structures were found
to be identical to four of the component arrays shown
in Fig. 1, as listed in Table 3.

Table 3. Identification of component structures described
by Corliss & Hastings with those defined in Fig. 1.

Corliss & Hastings 1 2 3 4
This paper ¢ b a d

Equation (12) is then rewritten in terms of the
component lattices:

Since (PF+@i+73)i—ap.ca =1 it becomes

A = 2—3{(Pat+qa+75)%+ (Po+gc+7a)2+ (Pe+qo+7a)?
+ (Pat+qa+re)?} . (13)
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From equations (7) and (13) it follows that
E, -E,

Emax._Eo ’

A =2-6

It follows that A =2 when E,=E, Therefore,
any configuration having a minimum magnetic inter-
action energy would give a neutron diffraction para-
meter 4 = 2. This is just the value observed by Corliss
& Hastings, so that it is proven that the dipole ar-
rangement in MnO and MnS, whatever it be, is a
minimum magnetic energy configuration. The neutron-
diffraction data do not, therefore, provide values for
the free parameters « and f, so that it is not certain
whether the orientation of the dipoles is actually fixed,
or whether the dipoles rotate in a correlated manner,
such that the minimum energy is preserved, and 4
always equals 2.

The configuration shown in Fig. 3 has 4 = 3/2, if
it is assumed that the structure is cubic. As was
pointed out in the previous section, this structure is
actually contracted along a [111] axis, so that the
experimental value 4 = 2 is not unreasonable for this
configuration.

6. The sphalerite structure

The ions of sphalerite, like those of rocksalt, form two
interpenetrating close-packed structures, of which one
consists of anions, the other of cations. Sphalerite and
rocksalt differ in the relative positions of these close-
packed arrays. The rocksalt cations are surrounded by
six anions at the corners of an octahedron, and the
anions are similarly surrounded by cations. In sphaler-
ite each ion is surrounded by four oppositely charged
ions at the corners of a tetrahedron. The sites occupied
by cations in rocksalt are called B-sites, and their
occupants B-ions, while the sites occupied by cations
in sphalerite are called A4-sites, which may be occupied
by A-ions. The coordinates of 4-sites have half-integer
values and satisfy either equation (1la) or (11b):

z+y+z =2K+%, (1la)

r+y+z=2K-1%. (118)

The coordinates of all cations in sphalerite satisfy
either equation (lla) or equation (115). For
instance, a sphalerite crystal having a cation at
site (—%, —3%, —3), which satisfies equation (11a), does
not have a cation at (3, 3, 3), which satisfies equation
(116). A crystal whose cations have coordinates
obeying equation (lla) can be converted into one
obeying equation (11b) by rotation through 90°.

7. The spinel structure

Spinels have the chemical formula MTM1Q,, where
Mt and M1 stand for, generally, two types of metal
ions. The oxygen ions form a, sometimes distorted,
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close-packed array. One-third of the cations occupy
A-sites, two-thirds occupy B-sites. The spinel struc-
ture can thus be considered an ordered mixture of the
rocksalt and sphalerite structures. A spinel has one-
fourth as many occupied A4-sites as does sphalerite,
and one-half as many occupied B-sites as does rocksalt.
Removal of half of the component cation arrays of the
rocksalt structure can be accomplished in two essen-
tially different ways, as shown in Table 4. Either an

Table 4. Generation of MIMTNO, structures
Sfrom rocksalt

(a) Odd number of
primed lattices

(6) Even number of
primed lattices

Celele [le] e

‘ a

even or an odd number of primed arrays may be
removed ; every combination of four arrays reduces by
rotation to one of the two combinations shown in
Table 4.

The two resulting structures are essentially different,
for the sites of lattices a’, b, ¢ and d form a tetrahedral
structure (see Fig. 1), whereas a’, b, ¢/, d form planar
arrays. The former structure is therefore more sym-
metrical, and it is the one out of which spinels are built
up. The latter structure will be discussed in § 8.

When either one or three primed and unprimed
arrays, adding up to half the rocksalt cations, have
been removed, they must be replaced by A4-cations.
These A-cations occupy the center of the tetrahedra
from which the B-sites were removed. If the scheme
followed in Table 4(a) is followed, then the surround-
ings of the anion at the origin would be as indicated
in Table 5 (see also Fig. 1).

Table 5. Surroundings of anion at (0,0, 0) tn spinel

Status,
Component  according to
Site Descriptor lattice Table 4(a)
1,0,0 000 a Empty
—10,0 001 a’ Filled
0,1,0 100 d Filled
0,—1,0 101 d’ Empty
0,0,1 010 b Filled
0,0, -1 011 b Empty

The location of the nearest A-ion is at the center
of the ‘empty’ tetrahedron, hence on a line making
equal, obtuse angles with lines toward a’,b and d.
It is therefore at the location (}, —%, —%), hence
belongs to the sites whose coordinates obey the
equation x+y+z = 2K 1.

The surroundings of the anion at, for instance,
(0, —2, 0) are given in Table 6.

The nearest A-ion is at (—3, —3, 1) the center of
the ‘empty’ tetrahedron, and hence in the lattice
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Table 6. Surroundings of an anion at (0, —2, 0) in spinel

Component
Site Descriptor lattice Status
1, -2,0 001 a’ Filled
-1, —-2,0 000 a Empty
0, —1,0 101 d’ Empty
0, —3,0 100 d Filled
0, —2,1 011 b Empty
0, —2, —1 010 b Filled

whose coordinates obey the equation z+y+2=2K +1.
The surroundings of the anion at (0, —2, 0) form a
configuration that is just the mirror image of those
of the anion at (0, 0, 0). Fig. 4 shows this portion of
the spinel structure.

B,0,: ROCKSALT AL0,: ZINCBLENDE 4,0, ZINCBLENDE

-zxvé NeysZ=2K-3

o i

REMOVE HALE THE B-S TAKE ONE EIGHTH TAKE ONE EIGHTH
YZ ——
00 01 11 10

ol®iofc
K [ £
llqhi&'

|

SUBSTITUTE FOR
REMOVED B-SITES

SPINEL

(rz.-3.-3)
2K-3

Fig. 4. Generation of spinel.

The spinel structure is therefore summarized as
consisting of a close-packed anion lattice array, one
or three of the unprimed and three or one of the primed
component cation arrays of the rocksalt structure, and
one-eighth of each of the two conjugate cation arrays
that can make up the sphalerite structure. There are,
therefore, six interpenetrating close-packed cation
arrays in the spinel structure, each with a lattice
parameter twice that of the close-packed anion arrays.
Each anion is surrounded by three B-cations in
mutually perpendicular directions and an A-cation in
a direction making equal obtuse angles with these three
directions. This configuration occurs throughout the
spinel structure, in eight possible orientations, the
A-ion being in one of the eight octants surrounding an
anion.

Finally, in Table 7, another example is worked out,
namely the surroundings of an anion at (8, 3, 1). The
nearest 4-ion is at (3, 3,1); its coordinates obey the
equation z+y+z = 2K +1.
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Table 7. Surroundings of an anion at (8, 3, 1) in spinel

Status,
Component  according to
Site Descriptor lattice Table 4(a)

9,3,1 110 c Filled
7, 3,1 111 ¢’ Empty
8,4,1 010 b Filled
8,2,1 011 b’ Empty
8,3, 2 100 d Filled
8,3,0 101 d’ Empty

8. The olivine structure

Like spinels, olivines have the chemical formula
M'MI0,, and the oxygens form a distorted close-
packed array. One third of the cations occupy A-sites,
and two-thirds occupy B-sites, just as in the spinel
structure. The distortion is such that the oxygens sur-
rounding an A4-ion are pulled very close to the A-ion,
so that the olivine structure looks like an array of
tetrahedra, with B-ions in the interstices. The A-ions
are, in olivine, Si, and the bond between Si and O is
covalent, hence very short. The difference between
spinels and olivines is illustrated by Table 4, for the
olivine structure is generated from rocksalt and
sphalerite according to the scheme of Table 4(b),
rather than that of Table 4(a) used for spinel. As
explained in § 7, the resulting structure has a sym-
metry lower than that of spinel, with a preferred axis
(one of the [111] axes of the close-packed anion lat-
tice). This is in accord with experimental observations
on olivine. As a result of the removal of B-cations
according to the scheme shown in Table 4(b), the
A-sites replacing these B-cations are located in planes
parallel to those of the remaining B-sites. As examples,
the surroundings of anions respectively at (0, 0, 0),
(0, —2,0) and (8, 3, 1) are shown in Tables 8, 9, and
10.

Table 8. Surroundings of anion at (0,0, 0) in olivine

Status,
Component  according to
Site Descriptor lattice Table 4(b)

1,0,0 000 a Empty
—-1,0,0 001 a’ Filled
0,1,0 100 d Filled

0,—1,0 101 d’ Empty
,0,1 010 b Filled

0,0, —1 011 b’ Empty

Table 9. Surroundings of anion at (0, —2, 0) in olivine

Status,
Component  according to
Site Descriptor lattice Table 4(b)

1, —2,0 001 a’ Filled

-1, -2,0 000 a Empty

0,—1,0 101 d’ Empty
0, —3,0 100 d Filled

0,—2,1 011 b’ Empty
0, —2, —1 010 b Filled
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Table 10. Surroundings of anion at (8, 3, 1) in olivine

Status,
Component  according to
Site Descriptor lattice Table 4(b)

93,1 110 c Empty
7, 3,1 111 ¢’ Filled
8,4,1 010 b Filled
8,2,1 011 b’ Empty
8,3,2 100 d Filled
8,3,0 101 d’ Empty

The A-ion nearest to (0, 0, 0) is located at (%, —3, —14);
its coordinates satisfy the equation z+y+z = 2K —4.

The A-ion nearest to (0, —2,0) is located at
(—3%, —3%,4); its coordinates satisfy the equation
2K +3.

The A-ion nearest (8,3,1) is at (&, 3,1); its co-
ordinates satisfy the equation z+y+z = 2K—1. It is
observed that the immediate surroundings of anions
at (0,0,0) and at (0, —2,0) are the same in spinel
as they are in olivine, but that for the anion at
(8,3, 1) the configurations of the surrounding ions
differ in orientation.

9. Conclusions

Through various applications it has been shown that
a description of crystals in terms of interpenetrating
arrays is convenient when interactions between
various crystal elements are to be evaluated, partic-
ularly when the spatial relationships between these
lattices enter into these interactions.

The binary algebra describing these lattices has been
useful in showing that dipole arrangements observed
in antiferromagnets correspond to a minimum mag-
netic dipole interaction energy. Furthermore, it has
given a better insight into the spinel and olivine
structures.

This algebra has several advantages over pictorial
unit-cell descriptions. Most of the interactions con-
sidered extend beyond the boundaries of a unit cell,
and therefore cannot be contained in a unit-cell
representation. Moreover, a single unit cell is usually
chosen relative to one of the component lattices. For
example, the drawing in Fig. 1 shows twice as many
c-lattice elements as it does a@-, - and d-elements.
By contrast, the Karnaugh map shown in the same
figure represents the eight lattices in a perfectly
symmetrical manner. As a consequence, the difficulty
of counting fractional ions at corners, edges and faces
is avoided, and a more direct connection between the
chemical formula and crystal structure is established.
The symmetry and flexibility of the Karnaugh repre-
sentation allows a grouping together of various con-
figurations, such as tetrahedra, squares and others
that may be of interest, which is very difficult to do
in the case of the unit-cell representation, since most
of these configurations overlap several adjacent unit
cells. The recent observations that some metallic
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crystals and metal-oxide crystals contain the same
cation structures indicated that a separate description
of the various cation lattices without reference to the
anion structure is quite useful.
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The Crystal and Molecular Structure of 9: 10-Dihydro-1:2:5:6-Dibenzanthracene
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The structure of 9:10-dihydro-1:2:5:6-dibenzanthracene has been determined by two-dimensional
Fourier syntheses. The cell is monoclinic with a = 9-49, b = 6-77, ¢ = 11:38 A, B = 91°29’;
2 molecules (C,,H,s) per unit cell; space group = P2,/a. Atomic coordinates were obtained from
F, and (Fo—F,) Fourier syntheses on the three principal zones. The molecule is essentially planar
(r.m.s. deviation of carbon atoms from mean plane is 0-039 A); the mean length of the C—C single
bond in the central ring is 1-503 A, the mean bond length of the aromatic rings is 1-401 A and the

mean angle in the aromatie rings is 120° 0.

Introduction

This compound (Fig.1) is of interest because it is
slightly carcinogenic and is derived from the more

Fig. 1. 9:10-Dihydro-1:2:5: 6-dibenzanthracene (C,,H,,).

strongly carcinogenic parent compound, 1:2:5:6-
dibenzanthracene. It is of interest also because of its
relation to 9:10-dihydroanthracene. The latter com-
pound was shown by Ferrier & Iball (1954) to have
a bent molecule in which two planar halves are in-
clined to each other at 145°. Beckett & Mulley (1955)
subsequently gave some theoretical reasons, based on
chemical evidence, why 9:10-disubstituted anthra-

cenes should have bent molecules, and they postulated
structures for the cis- and trans- isomers which can
occur when the substituents are different. The present
work will show that 9:10-dihydro-1:2:5:6-dibenz-
anthracene has a planar molecule which is not in
accord with predictions from normal stereochemical
considerations.

A preliminary crystallographic study was carried out
by Iball (1938), who gave the unit cells and space
groups of two crystal forms, both monoclinic. He
showed that one form [Form (ii)] had a space group
in which the molecules must possess a centre of sym-
metry, and from this deduced that the molecule must
be planar. It is this form which is the subject of the
present investigation. The crystals (from a sample
kindly provided by Dr J. W. Cook) were the same as

were used in the earlier investigation.

Crystal data

The crystals are monoclinic six-sided plates parallel to
(001). In the earlier work (Iball, 1938) the unit cell
chosen was as follows:

a=951, b=671,c=2443 A, g =1114°.

The crystals have negative birefringence with f
parallel to b and y approximately parallel to c. The
space group with the above cell is B2,/¢, and this



